
Test My Notebook
Release 0.0.1

Young-Chan Park

Jul 14, 2020

TABLE OF CONTENTS:

1 Installation Guide 3

2 How To Use 5

3 Why use testmynb ? 7

4 API References 11

5 Index 13

6 Module Index 15

7 Search 17

Index 19

i

ii

Test My Notebook, Release 0.0.1

testmynb is a testing framework which runs tests written in Jupyter Notebook code cells.

TABLE OF CONTENTS: 1

Test My Notebook, Release 0.0.1

2 TABLE OF CONTENTS:

CHAPTER

ONE

INSTALLATION GUIDE

1.1 Availability

Python: 3.5, 3.6, 3.7, 3.8, 3.9
Platforms: Linux, macOS

Run the following command to install testmynb from PyPI and check its version.

$ pip install testmynb
$ testmynb --version

3

Test My Notebook, Release 0.0.1

4 Chapter 1. Installation Guide

CHAPTER

TWO

HOW TO USE

2.1 %load_ext testmynb

Load testmynb to the ipython kernel to start using testmynb.

In [1]: %load_ext testmynb

2.2 %%testcell Magic

By loading testmynb to the ipython kernel, the %%testcell magic becomes available.

By adding the %%testcell magic to the cell, it flags the cell to be executed as a test by the testmynb command
line tool.

In [2]: %%testcell example_test_cell

assert 1==1, 'Example assert statement'

2.3 Test Cell

Test cells should generally have two things: a title and an assert statement.

Cell Title
The first positional argument of the cell magic line is used as the test cell’s title.

When running testmynb, the failed/errored test cell’s title is displayed to allow the user to distinguish which test
failed/errored. If no title is given, the title falls back to unnamed.

You may still distinguish the failed/errored test cell by observing the cell body and the traceback of the test.

Assert Statement
Like pytest, a test cell should contain an assert statement to test whatever you’re testing.

If any of the two above are missing, a message is displayed when the cell is executed.

5

Test My Notebook, Release 0.0.1

In [3]: %%testcell
test = True
No assert statement nor cell title.
Running this cell will print out a message
saying there is no assert statement nor a cell title.

[testmynb] Assert statement missing.
[testmynb] Cell title missing.

2.4 -n option

The -n option is used to run the cell during the test, but not to treat it as a test. This can be used for cells which contain
all the required import statements, or as a setup/teardown cell.

In [4]: %%testcell import_statements -n
import os
import sys

2.5 testmynb commandline

Run the testmynb command, and the command line tool searches for all the .ipynb files with the test_ prefix
and runs the designated test cells.

In [5]: !testmynb

========================== Test My Notebook (0.0.1) ==========================
Platform darwin
Python 3.7.1
Working Directory: ${PWD}

7 test cells across 2 notebook(s) detected.
Notebooks:
Trusted test_how_to.ipynb: ...
Untrusted test_why_use_testmynb.ipynb: ...

============== 7 test(s) passed, 0 failed, and 0 raised an error ==============

6 Chapter 2. How To Use

CHAPTER

THREE

WHY USE TESTMYNB ?

There are times when your tests need some documentation, but text comments alone are just not sufficient enough to
fully explain what the test is doing. By using testmynb, you may use Jupyter Notebook’s features to explain your
tests.

Like the example below. Say deep in your Python package, you made a function which adds a label to a given x, y
coordinate. You tried your best in the docstring what the function does, and you write the tests for the function which
all passes.

In [1]: %load_ext testmynb

In [2]: %%testcell imports -n
import pandas as pd
import numpy as np

In [3]: %%testcell example_func
Your function in your imaginary package.
def get_label(x: float, y: float) -> str:

"""
Based on the given coordinate, returns `purple`, `red`, and/or `orange` label.

`purple`: 0<=x<30 and 30<y<=100
`red`: 20<=x<70 and 60<y<=100
`orange`: 70<=x<=100 and 30<y<=100
"""
assert 0 <= x <= 100
assert 0 <= y <= 100

labels = list()
if (0 <= x < 30)\

and (30 < y <= 100):
labels.append('purple')

if (20 <= x < 70)\
and (60 < y <= 100):
labels.append('red')

if (70 <= x <= 100)\
and (30 < y <= 100):
labels.append('orange')

return ';'.join(labels)

In [4]: %%testcell test_get_label_original
Tests for the above function that all passes
assert 'purple;red' == get_label(25, 70)

(continues on next page)

7

Test My Notebook, Release 0.0.1

(continued from previous page)

assert 'purple' == get_label(10, 70)
assert 'orange' == get_label(80, 50)
assert '' == get_label(20, 20)

Technically, this all passes and the function works as intended. But text only explanation of the function, and looking at
the source itself just doesn’t intuitively tell the reader what the function does. In this situation, a graphical explanation
may aid in the reader to understand what the function/tests are doing.

In [5]: import matplotlib.pyplot as plt
%matplotlib inline

fig = plt.figure()

ax = fig.add_axes([0,0,1,1])
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_title('Example Scatter Plot')

ax.set_ylim(0, 100)
ax.set_xlim(0, 100)

ax.axvspan(20, 70, ymin=.6, ymax=.9, alpha=0.5, color='red')
ax.axvspan(0, 30, ymin=.3, ymax=1.0, alpha=0.5, color='purple')
ax.axvspan(70, 100, ymin=.3, ymax=1., alpha=0.5, color='orange')

ax.scatter(25, 70) # This should output `purple;red`
assert 'purple;red' == get_label(25, 70)
ax.scatter(10, 70) # This should output `purple`
assert 'purple' == get_label(10, 70)
ax.scatter(80, 50) # This should output `orange`
assert 'orange' == get_label(80, 50)
ax.scatter(20, 20) # This should output ``
assert '' == get_label(20, 20)
plt.show()

8 Chapter 3. Why use testmynb ?

Test My Notebook, Release 0.0.1

The above graphically shows what the function does and intuitively shows what the tests are testing!

Also, now we can graphically see what the function does, we can improve the tests with something like the
hypothesis package!

In [6]: %%testcell test_get_label_improved

from hypothesis import given, strategies

@given(
x = strategies.integers(min_value = 0, max_value = 19)
, y = strategies.integers(min_value = 31, max_value = 100)

)
def test_get_label_purple(x, y):

assert 'purple' == get_label(x, y)

@given(
x = strategies.integers(min_value = 30, max_value = 69)
, y = strategies.integers(min_value = 61, max_value = 90)

)
def test_get_label_red(x, y):

assert 'red' == get_label(x, y)

@given(
x = strategies.integers(min_value = 70, max_value = 100)
, y = strategies.integers(min_value = 31, max_value = 100)

)
def test_get_label_orange(x, y):

assert 'orange' == get_label(x, y)

9

Test My Notebook, Release 0.0.1

10 Chapter 3. Why use testmynb ?

CHAPTER

FOUR

API REFERENCES

4.1 Classes

class testmynb.handler.TestHandler(*notebooks)

class testmynb.notebook.TestCell(data, notebook)
Bases: collections.UserString

A class for Jupyter Notebook code cell.

Variables

• ignore (bool) – Whether the cell magic line contained the -t option.

• name (str) – The user defined name of the test cell block.

class testmynb.notebook.Notebook(ipynb: TextIO)
Bases: nbformat.notebooknode.NotebookNode

A class used to read the Jupyter Notebook

Parameters ipynb (TextIO) – Path to the .ipynb file.

Variables

• ipynb (TextIO) – Absolute path to the .ipynb file that was given to instantiate the in-
stance.

• name (str) – Name of the .ipynb file.

• trusted (bool) – Whether the Notebook is Trusted or not for the user.

• nbformat (str) – The Jupyter Notebook format number.

extract_codes()
Returns a list of code cells with the %%testcell cell magic.

4.2 Functions

testmynb.handler.find_notebooks(*args)

11

Test My Notebook, Release 0.0.1

12 Chapter 4. API References

CHAPTER

FIVE

INDEX

13

Test My Notebook, Release 0.0.1

14 Chapter 5. Index

CHAPTER

SIX

MODULE INDEX

15

Test My Notebook, Release 0.0.1

16 Chapter 6. Module Index

CHAPTER

SEVEN

SEARCH

17

Test My Notebook, Release 0.0.1

18 Chapter 7. Search

INDEX

E
extract_codes() (testmynb.notebook.Notebook

method), 11

F
find_notebooks() (in module testmynb.handler), 11

N
Notebook (class in testmynb.notebook), 11

T
TestCell (class in testmynb.notebook), 11
TestHandler (class in testmynb.handler), 11

19

	Installation Guide
	How To Use
	Why use testmynb ?
	API References
	Index
	Module Index
	Search
	Index

